Rooted partitions and number-theoretic functions

Bruce Sagan Michigan State University www.math.msu.edu/~sagan

Michigan Technological University September 19, 2024

Introduction

An identity with $\boldsymbol{\phi}$

An identity with μ

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$, and if $n \in \mathbb{N}$ then let $[n] = \{1, 2, \ldots, n\}$. A partition of $n \in \mathbb{N}$, written $\lambda \vdash n$, is a weakly decreasing sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_m)$ with $\sum_i \lambda_i = n$. Let

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. **Ex.** $\mathcal{P}(4) = \{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

$$\Phi(n) = \{k \in [n] \mid \gcd(k, n) = 1\} \text{ and } \phi(n) = \#\Phi(n).$$

Ex.
$$\Phi(12) = \{1, 5, 7, 11\}$$
 so $\phi(12) = 4$.

Finally, still for $n \ge 1$, the Möbius function is

$$\mu(n) = \begin{cases} (-1)^{\delta(n)} & \text{if } n \text{ is square free,} \\ 0 & \text{else,} \end{cases}$$

where $\delta(n)$ is number of distinct prime divisors of n.

Ex.
$$\mu(70) = \mu(2 \cdot 5 \cdot 7) = (-1)^3 = -1$$
 but $\mu(50) = \mu(2 \cdot 5^2) = 0$.

Let

$$S_k(n) = \text{ number of } k$$
's in all the $\lambda \vdash n$.

Ex. If n = 4 and k = 1 then

$$\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$$

and, counting the number of ones in each partition,

$$S_1(4) = 0 + 1 + 0 + 2 + 4 = 7.$$

Let

$$S_k^{\geq r}(n) = \text{ number of } k$$
's in all the $\lambda \vdash n$ with parts $\geq r$.

Merca and Schmidt prove the following identities mainly by manipulation of q-series. We prove them combinatorially.

Theorem (Merca-Schmidt)

1.
$$S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1)$$
.

2.
$$p(n) = \sum_{k=3}^{n+3} \frac{\phi(k)}{2} S_k^{\geq 3} (n+3)$$
.

3.
$$p(n) = \sum_{k=1}^{n+1} \mu(k) S_k(n+1)$$
.

4.
$$p(n) = -\sum_{k=2}^{n+2} \mu(k) S_k^{\geq 2}(n+2)$$
.

Call a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ of *n rooted* if one of its parts, say one of the k's, has been distinguished. This part is called the *root* and will be denoted \hat{k} .

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

$$(5,\hat{2},2,2,1,1),\ (5,2,\hat{2},2,1,1),\ \text{and}\ (5,2,2,\hat{2},1,1).$$

Let

$$\mathcal{S}_k^{\geq r}(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } k \text{ and with parts } \geq r\}.$$

and
$$S_k(n) = S_k^{\geq 1}(n)$$
. Clearly $\#S_k^{\geq r}(n) = S_k^{\geq r}(n)$ for all n, k, r .

Let λ, ν be two partitions with at most one of them rooted. Their *direct sum* $\lambda \oplus \nu$ is obtained by, for each k, concatenating

the string of k's in λ with the string of k's in ν , including the \hat{k} if one exists.

Ex. $(5,2,2,1) \oplus (4,4,2,\hat{2},2,1,1) = (5,4,4,2,2,2,\hat{2},2,1,1,1)$. Note that this operation is not commutative as

$$(4,4,2,\hat{2},2,1,1) \oplus (5,2,2,1) = (5,4,4,2,\hat{2},2,2,2,1,1,1).$$

Theorem (Merca-Schmidt)
$$S_1(n) = \sum_{k=0}^{\infty} \phi(k) S_k^{\geq 2}(n+1)$$
.

Proof. (Sagan) We give a bijection $\mathcal{S}_1(n) o \mathcal{S}'(n+1)$ where

$$\mathcal{S}_1(\textit{n}) = \{\lambda \mid \lambda \vdash \textit{n} \text{ rooted at } 1\}$$

$$\mathcal{S}'(n+1) = \{(\lambda',r) \mid \lambda' \in \mathcal{S}_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$$

Given $\lambda \in \mathcal{S}_1(n)$, let

$$o = \text{ number of 1's in } \lambda,$$

$$p = \text{position of } \hat{1} \text{ (positions numbered left to right)},$$

 $g = \gcd(p + 1, p)$

$$g=\gcd(o+1,p).$$

Ex. Suppose that

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) \in \mathcal{S}_1(15).$$

So

$$o = 5,$$

 $p = 3,$
 $g = \gcd(5 + 1, 3) = 3.$

Write

$$\lambda = \nu \oplus \omega$$
 where ω contains all the 1's and $\hat{1}$,

Let

$$\lambda' =
u \oplus \omega'$$
 where $\omega' = \widehat{((o+1)/g, (o+1)/g, \dots, (o+1)/g)},$ $r = p/g.$

Ex. We have

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) = (4, 4, 2) \oplus (1, 1, \hat{1}, 1, 1).$$

Recall o = 5, p = 3, and $g = \gcd(5 + 1, 3) = 3$. Let

$$\omega' = \widehat{(5+1)/3}, (5+1)/3, (5+1)/3) = \widehat{(2,2,2)}.$$

So
$$\lambda' = (4, 4, 2) \oplus (\hat{2}, 2, 2) = (4, 4, 2, \hat{2}, 2, 2)$$
 and $r = 3/3 = 1$.

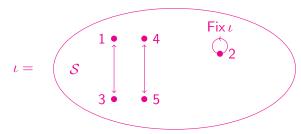
One can show that the map $\lambda \mapsto (\lambda', r)$ is a bijection by constructing its inverse.

Let $\mathcal S$ be a finite set. Bijection $\iota:\mathcal S\to\mathcal S$ is an *involution* if $\iota^2=\operatorname{id}$, the identity map. Any bijection $\iota:\mathcal S\to\mathcal S$ can be considered as a digraph with vertex set $\mathcal S$ and an arc \vec{st} if $\iota(s)=t$. This graph can be decomposed into directed cycles.

Lemma ι is an involution iff each cycle contains 1 or 2 elements. Let

$$\mathsf{Fix}\,\iota=\{s\in\mathcal{S}\mid\iota(s)=s\}.$$

Ex. Let S = [5] and $\iota(1) = 3$, $\iota(2) = 2$, $\iota(3) = 1$, $\iota(4) = 5$, $\iota(5) = 4$. Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$. The cycle containing 1 is $1 \leftrightarrow \iota(1)$ or $1 \leftrightarrow 3$. Also Fix $\iota = \{2\}$.



A set S is *signed* if there is a map $sgn : S \to \{-1, +1\}$. Let

$$\mathcal{S}^+ = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = +1 \}, \qquad \mathcal{S}^- = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = -1 \}.$$

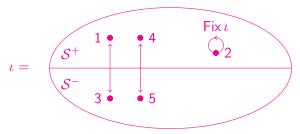
Involution $\iota: \mathcal{S} \to \mathcal{S}$ is sign reversing if

- 1. For every two-cycle $s \leftrightarrow t$ of ι we have $\operatorname{sgn} s = -\operatorname{sgn} t$.
- 2. For every fixed point s of ι we have $\operatorname{sgn} s = +1$.

So in this case

$$\sum_{s \in \mathcal{S}} \operatorname{sgn} s = \# \operatorname{Fix} \iota.$$

Ex. Let sgn 1 = sgn 2 = sgn 4 = +1 and sgn 3 = sgn 5 = -1.



Theorem (Merca-Schmidt) $p(n) = \sum \mu(k) S_k(n+1)$.

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{\lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part}\}.$

Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$
 Since the number of ways to read,) at k is the number of k in

Since the number of ways to root λ at k is the number of k's in λ

$$\sum_{\lambda \in \mathcal{S}(n+1)} \operatorname{sgn} \lambda = \sum_{k \text{ square-free }} \sum_{\lambda \in \mathcal{S}_k(n+1)} \mu(k) = \sum_{k \text{ square-free }} \mu(k) \, \mathcal{S}_k(n+1).$$

Also, there is a bijection between partitions $\nu \in \mathcal{P}(n)$ and the partitions $\nu' \in \mathcal{S}(n+1)$ obtained by inserting a $\hat{1}$ at the end of ν .

Ex.
$$\nu = (5, 3, 3, 2, 1, 1) \leftrightarrow \nu' = (5, 3, 3, 2, 1, 1, 1).$$

So it suffices to produce a sign-reversing involution ι on $\mathcal{S}(n+1)$ with the rooted partitions ending in $\hat{1}$ as fixed points.

To construct the sign-reversion involution, we will need

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \geq 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime p.

Ex.
$$\pi(75) = \pi(3 \cdot 5^2) = 3$$
 and $\pi(1) = \infty$.

If $\lambda \in \mathcal{S}(n+1)$ with root \hat{k} then let m be the number of parts equal to k after and including \hat{k} .

Write

$$\lambda = \nu \oplus \kappa$$
 where $\kappa = (\widehat{\hat{k}, k, \dots, k})$.

Ex. $\lambda = (3, 3, 2, \hat{2}, 2, 2, 1, 1)$. Thus the root is k = 2 and there are m = 3 parts of that size after and including $\hat{2}$. Furthermore

$$\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$$

We now have 2 cases for constructing $\lambda' = \iota(\lambda)$ depending on the the relative sizes of $\pi(k)$ and $\pi(m)$. Consider any $\lambda \in \mathcal{S}(n+1)$ not ending with $\hat{1}$. So $\min\{\pi(k), \pi(m)\} \neq \infty$ making both cases well defined.

Case 1: $\pi(k) \leq \pi(m)$. Then we let

$$k_1 = k/\pi(k)$$
 and $m_1 = m \cdot \pi(k)$.

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\widehat{k_1, k_1, \dots, k_1})$.

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \leq \pi(m)$. Let

$$k_1 = k/\pi(k) = 2/2 = 1$$
 and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6$.

So
$$\kappa' = (\hat{1}, 1, 1, 1, 1, 1)$$
 and

$$\lambda' = (3,3,2,1,1) \oplus (\hat{1},1,1,1,1,1) = (3,3,2,1,1,\hat{1},1,1,1,1,1).$$

Case 2: $\pi(k) > \pi(m)$. Then we let

$$k_2 = k \cdot \pi(m)$$
 and $m_2 = m/\pi(m)$.

Also let

$$\lambda' = \nu \oplus \kappa''$$
 where $\kappa'' = (\widehat{k_2}, k_2, \dots, k_2)$.

One can check that Cases 1 and 2 are sign-reversing inverses.

References

- 1. Cristina Ballantine, George Beck, Mircea Merca, Bruce E. Sagan, Elementary symmetric partitions, arXiv:2409.11268.
- 2. Mircea Merca and Maxie D. Schmidt. A partition identity related to Stanley's theorem. *Amer. Math. Monthly*, 125(10):929–933, 2018.
- 3. Mircea Merca and Maxie D. Schmidt. The partition function p(n) in terms of the classical Möbius function. Ramanujan J., 49(1):87–96, 2019.
- Bruce E. Sagan. Combinatorics: the Art of Counting, volume 210 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2020.

Click the link for the book on my web page for a free copy.

5. Bruce E. Sagan. Rooted partitions and number-theoretic functions. *Ramanujan J.*, 64(1):253–264, 2024.

THANKS FOR

LISTENING!